Refine Your Search

Topic

Search Results

Journal Article

Designing an Uncrewed Aircraft Systems Control Model for an Air-to-Ground Collaborative System

2024-02-19
Abstract In autonomous technology, uncrewed aircraft systems have already become the preferred platform for the research and development of flight control systems. Although they are subjected to following and satisfying complicated scenarios of control stations, this high dependency on a specific control framework limits them in their application process and reduces the flight self-organizing network. In this article, we present a developed multilayer control system protocol with the additional supportive manned aircraft layer (Tender). The novelty of the introduced model is that uncrewed aircraft systems are monitored and navigated by the tender, and then based on the suggested scheme, data flows are controlled and transferred across the network by the developed cloud–robotics approach in the ground station layer.
Journal Article

Forensic Analysis of Lithium-Ion Cells Involved in Fires

2024-02-14
Abstract The emerging use of rechargeable batteries in electric and hybrid electric vehicles and distributed energy systems, and accidental fires involving batteries, has heightened the need for a methodology to determine the root cause of the fire. When a fire involving batteries takes place, investigators and engineers need to ascertain the role of batteries in that fire. Just as with fire in general, investigators need a framework for determining the role that is systematic, reliant on collection and careful analysis of forensic evidence, and based on the scientific method of inquiry. This article presents a systematic scientific process to analyze batteries that have been involved in a fire. It involves examining Li-ion cells of varying construction, using a systematic process that includes visual inspection, x-ray, CT scan, and possibly elemental analysis and testing of exemplars.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

Iterative Learning for Laboratory Electro-Hydraulic Fully Flexible Valve Actuation System Transient Control

2024-02-06
Abstract Fully flexible valve actuation (FFVA) is a key enabling technology of internal engine combustion research and development. Two laboratory electro-hydraulic FFVA systems have been developed and implemented in R&D test cells. These FFVA systems were designed using repetitive control (RC), which is based on internal model principle (IMP), for constant engine speed operation. With the engine operating in a steady-state condition, the valve profile input is periodic. This can be accommodated by a repetitive controller, which provides the function of flexible control to step changes in valve lift, valve opening duration, and cam phase angle position. During engine speed transients, as the valve reference trajectory becomes aperiodic in the time domain, the controllers based on the linear time invariant (LTI) IMP, such as RC, are no longer applicable. Engine speed transient control is a desired function to engine research and other similar applications, such as motor control.
Journal Article

A Novel Approach to Light Detection and Ranging Sensor Placement for Autonomous Driving Vehicles Using Deep Deterministic Policy Gradient Algorithm

2024-01-31
Abstract This article presents a novel approach to optimize the placement of light detection and ranging (LiDAR) sensors in autonomous driving vehicles using machine learning. As autonomous driving technology advances, LiDAR sensors play a crucial role in providing accurate collision data for environmental perception. The proposed method employs the deep deterministic policy gradient (DDPG) algorithm, which takes the vehicle’s surface geometry as input and generates optimized 3D sensor positions with predicted high visibility. Through extensive experiments on various vehicle shapes and a rectangular cuboid, the effectiveness and adaptability of the proposed method are demonstrated. Importantly, the trained network can efficiently evaluate new vehicle shapes without the need for re-optimization, representing a significant improvement over classical methods such as genetic algorithms.
Journal Article

Design, Analysis, and Optimization of Off-Highway Rear Dump Truck Chassis Frame Rail Profile Using Design Exploration and Finite Element Analysis Technique

2024-01-31
Abstract During mining material hauling, the chassis frame structure of rear dump trucks is subjected to fatigue loading due to uneven road conditions. This loading often leads to crack propagation in the frame rails, necessitating the determination of stresses in the critical zone during the design stage to ensure structural integrity. In this study, a computer-aided engineering (CAE) methodology is employed to size and select the rectangular profile cross section of the chassis frame rail. A detailed design investigation of the chassis frame is conducted to assess its load resistance, structural flexibility, and weld joint fatigue life under critical stresses arising from combined bending and torsion loads. The optimization process aims to determine the optimal rail size and material thickness, striking a balance between minimizing mass and maximizing structural reliability.
Journal Article

Experimental Assessment of Different Air-Based Battery Thermal Management System for Lithium-Ion Battery Pack

2024-01-25
Abstract Lithium-ion (LI) batteries are widely used to power electric vehicles (EVs), owing to their high charge density, to minimize the environmental pollution caused by fossil fuel-based engines. It experiences an enormous amount of heat generation during charging and discharging cycles, which results in higher operating temperatures and thermal nonuniformity. This affects performance, useful battery life, and operating costs. This can be mitigated by an effective battery thermal management system (BTMS) to dissipate the heat there by safeguarding the battery from adverse thermal effects and ensuring high performance, safety, and longevity of the battery.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

Integrated Four-Wheel Steering and Direct Yaw-Moment Control for Autonomous Collision Avoidance on Curved Road

2024-01-25
Abstract An automatic collision avoidance control method integrating optimal four-wheel steering (4WS) and direct yaw-moment control (DYC) for autonomous vehicles on curved road is proposed in this study. Optimal four-wheel steering is used to track a predetermined trajectory, and DYC is adopted for vehicle stability. Two single lane change collision avoidance scenarios, i.e., a stationary obstacle in front and a moving obstacle at a lower speed in the same lane, are constructed to verify the proposed control method. The main contributions of this article include (1) a quintic polynomial lane change trajectory for collision avoidance on curved road is proposed and (2) four different kinds of control method for autonomous collision avoidance, namely 2WS, 2WS+DYC, 4WS, and 4WS+DYC, are compared. In the design of DYC controller, two different feedback control methods are adopted for comparison, i.e., sideslip angle feedback and yaw rate feedback.
Journal Article

Modeling and Comparing the Total Cost of Ownership of Passenger Automobiles with Conventional, Electric, and Hybrid Powertrains

2024-01-25
Abstract The global automotive industry’s shift toward electrification hinges on battery electric vehicles (BEV) having a reduced total cost of ownership compared to traditional vehicles. Although BEVs exhibit lower operational costs than internal combustion engine (ICE) vehicles, their initial acquisition expense is higher due to expensive battery packs. This study evaluates total ownership costs for four vehicle types: traditional ICE-based car, BEV, split-power hybrid, and plug-in hybrid. Unlike previous analyses comparing production vehicles, this study employs a hypothetical sedan with different powertrains for a more equitable assessment. The study uses a drive-cycle model grounded in fundamental vehicle dynamics to determine the fuel and electricity consumption for each vehicle in highway and urban conditions. These figures serve a Monte Carlo simulation, projecting a vehicle’s operating cost over a decade based on average daily distance and highway driving percentage.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Dynamic Game Theoretic Electric Vehicle Decision Making

2024-01-16
Abstract Real-world driving in diverse traffic must cope with dynamic environments including a multitude of agents with uncertain behaviors. This poses a challenging motion planning and decision-making problem, as suitable algorithms should manage to obtain optimal solutions considering nearby vehicles. The state-of-the-art way of environment and action generalization is built on mathematical modeling and probabilistic programming of idealistic incidents. In this article we present dynamic anytime decision making, a decision-making algorithm that takes advantage of natural evolutionary and developmental processes to make decisions for an autonomous vehicle navigating in traffic. The methodology to achieve multidimensional judgment under unforeseen circumstances is to enable stochastic Bayesian game theory when modeling interactive properties and scenario estimation.
Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

Improvement of Traction Force Estimation in Cornering through Neural Network

2024-01-04
Abstract Accurate estimation of traction force is essential for the development of advanced control systems, particularly in the domain of autonomous driving. This study presents an innovative approach to enhance the estimation of tire–road interaction forces under combined slip conditions, employing a combination of empirical models and neural networks. Initially, the well-known Pacejka formula, or magic formula, was adopted to estimate tire–road interaction forces under pure longitudinal slip conditions. However, it was observed that this formula yielded unsatisfactory results under non-pure slip conditions, such as during curves. To address this challenge, a neural network architecture was developed to predict the estimation error associated with the Pacejka formula. Two distinct neural networks were developed. The first neural network employed, as inputs, both longitudinal slip ratios of the driving wheels and the slip angles of the driving wheels.
Journal Article

Artificial Intelligence-Based Field-Programmable Gate Array Accelerator for Electric Vehicles Battery Management System

2024-01-04
Abstract The swift progress of electric vehicles (EVs) and hybrid electric vehicles (HEVs) has driven advancements in battery management systems (BMS). However, optimizing the algorithms that drive these systems remains a challenge. Recent breakthroughs in data science, particularly in deep learning networks, have introduced the long–short-term memory (LSTM) network as a solution for sequence problems. While graphics processing units (GPUs) and application-specific integrated circuits (ASICs) have been used to improve performance in AI-based applications, field-programmable gate arrays (FPGAs) have gained popularity due to their low power consumption and high-speed acceleration, making them ideal for artificial intelligence (AI) implementation. One of the critical components of EVs and HEVs is the BMS, which performs operations to optimize the use of energy stored in lithium-ion batteries (LiBs).
Journal Article

Estimation of Lateral Velocity and Cornering Stiffness in Vehicle Dynamics Based on Multi-Source Information Fusion

2024-01-04
Abstract To address the challenge of directly measuring essential dynamic parameters of vehicles, this article introduces a multi-source information fusion estimation method. Using the intelligent front camera (IFC) sensor to analyze lane line polynomial information and a kinematic model, the vehicle’s lateral velocity and sideslip angle can be determined without extra sensor expenses. After evaluating the strengths and weaknesses of the two aforementioned lateral velocity estimation techniques, a fusion estimation approach for lateral velocity is proposed. This approach extracts the vehicle’s lateral dynamic characteristics to calculate the fusion allocation coefficient. Subsequently, the outcomes from the two lateral velocity estimation techniques are merged, ensuring rapid convergence under steady-state conditions and precise tracking in dynamic scenarios.
Journal Article

An Energy-Efficient Merge-Aware Cruise Control Method for Connected Electric Vehicles

2023-12-28
Abstract This article presents a merge-aware cruise control method that incorporates vehicle-to-vehicle (V2V) information and aims at improving the energy efficiency of vehicles and reducing speed disruptions of merging traffic during highway merges. During the events of highway merges, the gap between the ego and the preceding vehicle reduces drastically, which can result in sudden braking of the ego vehicle and thus reduction of its energy efficiency. We propose a rather simple cruise control algorithm to eliminate such sudden variations in the gap and velocity with respect to the preceding vehicle during highway merges, thus reducing the large accelerations and braking during such events and thereby improving energy efficiency. The proposed algorithm incorporates future traffic information and has computational requirements similar to adaptive cruise control methods, hence it is real-time applicable.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
Journal Article

Using Latent Heat Storage for Improving Battery Electric Vehicle Thermal Management System Efficiency

2023-12-20
Abstract One of the key problems of battery electric vehicles is the risk of severe range reduction in winter conditions. Technologies such as heat pump systems can help to mitigate such effects, but finding adequate heat sources for the heat pump sometimes can be a problem, too. In cold ambient conditions below −10°C and for a cold-soaked vehicle this can become a limiting factor. Storing waste heat or excess cold when it is generated and releasing it to the vehicle thermal management system later can reduce peak thermal requirements to more manageable average levels. In related architectures it is not always necessary to replace existing electric heaters or conventional air-conditioning systems. Sometimes it is more efficient to keep them and support them, instead. Accordingly, we show, how latent heat storage can be used to increase the efficiency of existing, well-established heating and cooling technologies without replacing them.
X